If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-88x+40=0
a = 12; b = -88; c = +40;
Δ = b2-4ac
Δ = -882-4·12·40
Δ = 5824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5824}=\sqrt{64*91}=\sqrt{64}*\sqrt{91}=8\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88)-8\sqrt{91}}{2*12}=\frac{88-8\sqrt{91}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88)+8\sqrt{91}}{2*12}=\frac{88+8\sqrt{91}}{24} $
| Sx7+33=187 | | 32u^2-50=0 | | (x+1)/x=12 | | 11+8x=5x+6+3 | | 12x-8x-8=-52 | | 9(x−9)=63 | | 2-5x=3(2-x | | 1/5x=(1/4-x)-4*(1/2x-2) | | d^2=2d+120 | | 7x-12=5x+14 | | 3(x-1)-2(x+3=0 | | x-11=2x-22 | | x+(x-x(.4))=32.4 | | 2x^2-13x=14x-36 | | -3x^2+52x-169=0 | | 3/5=n-2/10 | | 2.5+22=4x+10 | | (2-z)(3z-5)=0 | | -72x^2+104x-20=0 | | -3x+52=4x-4 | | 5s=6 | | 8(x+1)=3x+48 | | -3x+52+4x-4=180 | | 9x+23=6x+17 | | (9+u)(2u-3)=0 | | 4x+6.25=15x+80 | | (x+1)^2=4 | | 4x-6.25=15x+80 | | n/40-20=-1 | | x÷3=15 | | 2x+13=13+x | | 9y-(5y-8)=-10-2y |